High-performance flexible photodetectors based on GaTe nanosheets.

نویسندگان

  • Zhenxing Wang
  • Muhammad Safdar
  • Misbah Mirza
  • Kai Xu
  • Qisheng Wang
  • Yun Huang
  • Fengmei Wang
  • Xueying Zhan
  • Jun He
چکیده

2D layered GaTe materials have attracted a great deal of attention for optoelectronic applications due to their direct band structure, whether in bulk or as a single layer. In this paper, for the first time, we have synthesized high quality, single crystalline GaTe nanosheets by employing a facile CVD method. The size of the GaTe nanosheets reached several tens of micrometers, and some of them even exceeded 100 μm. In particular, planar GaTe nanosheets were achieved on a mica substrate following a van der Waals epitaxial growth mechanism. Further, through a systematic comparison of the performances under various conditions, we found that adsorbates on the GaTe surface under ambient conditions strongly deteriorated the GaTe photodetector device performance. After removing the adsorbates in a ∼ 7 × 10(-5) torr vacuum, a flexible, fast response GaTe photodetector with a high photoresponse, high mechanical stability and an excellent linear input-output relationship was obtained. The results presented in this study suggest that the GaTe nanosheets grown by a CVD method are promising candidates for optoelectronic applications in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets.

A high performance hybrid broadband photodetector with graphene/nitrogen-functionalized graphene quantum dots (NGQDs@GFET) is developed using boron nitride nanosheets (BN-NSs) as a buffer layer to facilitate the separation and transport of photoexcited carriers from the NGQD absorber. The NGQDs@GFET photodetector with the buffer layer of BN-NSs exhibits enhanced photoresponsivity and detectivit...

متن کامل

High-Performance and Self-Powered Deep UV Photodetectors Based on High Quality 2D Boron Nitride Nanosheets

High-quality two-dimensional (2D) crystalline boron nitride nanosheets (BNNSs) were grown on silicon wafers by using pulsed plasma beam deposition techniques. Self-powered deep ultraviolet (DUV) photodetectors (PDs) based on BNNSs with Schottky contact structures are designed and fabricated. By connecting the fabricated DUV photodetector to an ammeter, the response strength, response time and r...

متن کامل

Flexible Photodetectors Based on 1D Inorganic Nanostructures

Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic pr...

متن کامل

Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse.

With a band gap of 2.28 eV, In2S3 is an excellent candidate for visible-light sensitive photodetectors. By growing single-crystalline In2S3 nanowires via a simple CVD method, we report the fabrication of high-performance single-crystal In2S3 nanowire-based flexible photodetectors. The as-fabricated flexible photodetectors exhibited an ultra-high Ion/Ioff ratio up to 10(6) and a high sensitivity...

متن کامل

Flexible transition metal dichalcogenide nanosheets for band-selective photodetection

The photocurrent conversions of transition metal dichalcogenide nanosheets are unprecedentedly impressive, making them great candidates for visible range photodetectors. Here we demonstrate a method for fabricating micron-thick, flexible films consisting of a variety of highly separated transition metal dichalcogenide nanosheets for excellent band-selective photodetection. Our method is based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 16  شماره 

صفحات  -

تاریخ انتشار 2015